Skip to main content
Log in

A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands

  • Note
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We developed a surface-associated activity trap (SAT) for sampling aquatic invertebrates in wetlands. We compared performance of this trap with that of a conventional activity trap (AT) based on nondetection rates and relative abundance estimates for 13 taxa of common wetland invertebrates and for taxon richness using data from experiments in constructed wetland. Taxon-specific non-detection rates for ATs generally exceeded those of SATs, and largest improvements using SATs were for Chironomidae and Gastropoda. SATs were efficient at capturing cladocera, Chironomidae, Gastropoda, total Crustacea, and multiple taxa (taxon richness) but were only slightly better than ATs at capturing Dytiscidae. Temporal differences in capture rates were observed only for cladocera, Chironomidae, Dytiscidae, and total Crustacea, with capture efficiencies of SATs usually decreasing from mid-June through mid-July for these taxa. We believe that SATs may be useful for characterizing wetland invertebrate communities and for developing improved measures of prey available to foraging waterfowl and other aquatic birds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Adamus, P. R. 1996. Bioindicators for assessing ecological integrity of prairie wetlands. Environmental Protection Agency, National Health and Environmental Effects Research Laboratory, Western Ecology Division. Corvallis, OR, USA. EPA/600/R-96/082. U.S.

    Google Scholar 

  • Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley and Sons. New York, NY, USA.

    Google Scholar 

  • Bartonek, J. C. and J. J. Hickey. 1969. Food habits of canvasbacks, redheads, and lesser scaup in Manitoba. Condor 71:280–290.

    Article  Google Scholar 

  • Bartonek, J. C. and H. W. Murdy. 1970. Summer foods of lesser scaup in subarctic taiga. Journal of the Arctic Institute of North America 23:35–44.

    Google Scholar 

  • Bataille, K. J. and G. A. Baldassarre. 1993. Distribution and abundance of aquatic macroin vertebrates following drought in three prairie pothole wetlands. Wetlands 13:260–269.

    Google Scholar 

  • Bouffard, S.H. and M.A. Hanson. 1997. Fish in waterfowl marshes waterfowl managers’ perspective. Wildlife Society Bulletin 25: 146–157.

    Google Scholar 

  • Breslow, N.R. and D.G. Clayton. 1993. Approximate inference in generalized linear mixed models. Journal of the American Statistical Association 88:9–25.

    Article  Google Scholar 

  • Brinkman, M. A. and W. G. Duffy. 1996. Evaluation of four wetland aquatic invertebrate samplers and four sample sorting methods. Journal of Freshwater Ecology 11:193–200.

    Google Scholar 

  • Chura, J. J. 1961. Food availability and preferences of juvenile mallards. North American Wildlife Conference Transactions 26:121–133.

    Google Scholar 

  • Corkum, L. D. 1984. Movements of marsh-dwelling invertebrates. Freshwater Biology 14:89–94.

    Article  Google Scholar 

  • Cox, R. R., Jr., M. A. Hanson, C. C. Roy, N. H. Euliss, Jr., D. H. Johnson, and M. G. Butler. 1998. Mallard duckling growth and survival in relation to aquatic invertebrates. Journal of Wildlife Management 62:124–133.

    Article  Google Scholar 

  • Danell, K. and K. Sjöberg. 1980. Foods of Wigeon, teal, mallard and pintail during the summer in a Northern Swedish Lake. Viltrevy 11:141–167.

    Google Scholar 

  • Elmberg, J., P. Nummi, H. Pöysa, and K. Sjöberg. 1992. Do intruding predators and trap position affect the reliability of catches in activity traps? Hydrobiologia 239:187–193.

    Article  Google Scholar 

  • Gerard, P. D., D. S. Smith, and G. Weerakkody. 1998. Limits of retrospective power analysis. Journal of Wildlife Management 62: 801–807.

    Article  Google Scholar 

  • Hanson, M. A., C. R. Roy, and K. D. Zimmer. 1995. Bait fish effects on wetland invertebrate communities and mallard ducklings-preliminary results and conclusions. p. 167–196. In B. Joselyn (ed.) Summaries of Wildlife Research Findings 1995. Minnesota Department of Natural Resources, Section of Wildlife, St. Paul, MN, USA.

    Google Scholar 

  • Hanson, M. A. and M. R. Riggs 1995. Potential effects of fish predation on wetland invertebrates: a comparison of wetlands with and without fathead minnows. Wetlands 15:167–175.

    Article  Google Scholar 

  • Keene, O. N. 1995. The log transformation is special. Statistics in Medicine 14:811–819.

    Article  CAS  PubMed  Google Scholar 

  • Kelsey, J., W. D. Thompson, and A. S. Evans. 1996. Methods in Observational Epidemiology. Oxford University Press. New York, NY, USA.

    Google Scholar 

  • Krapu, G. L. and K. J. Reinecke. 1992. Foraging ecology and nutrition. p. 1–29. In B. D. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, and G. L. Krapu (eds.) Ecology and Management of Breeding Waterfowl. University of Minnesota Press, Minneapolis, MN, USA.

    Google Scholar 

  • Littell, R. C., G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute Inc., Cary, NC, USA.

    Google Scholar 

  • Manly, B. F. 1992. The Design and Analysis of Research Studies. Cambridge University Press, New York, NY, USA.

    Google Scholar 

  • Merritt, R. W. and K. W. Cummins (eds.). 1984. An Introduction to the Aquatic Insects of North America. Kendall/Hunt Publishing Company, Dubuque, IA, USA.

    Google Scholar 

  • Muller, K. and V. A. Benignus. 1992. Increasing scientific power with statistical power. Neurotoxicology and Teratology 14:211–219.

    Article  CAS  PubMed  Google Scholar 

  • Murkin, H. R., P. G. Abbott, and J. A. Kadlec. 1983. A comparison of activity traps and sweep nets for sampling nektonic invertebrates in wetlands. Freshwater Invertebrate Biology 2:99–106.

    Article  Google Scholar 

  • Murkin, H. R. and D. A. Wrubleski. 1988. Aquatic invertebrates of freshwater wetlands: function and ecology. p. 239–249. In D. D. Hook, W. H. McKee, Jr., H. K. Smith, J. Gregory, V. G. Burrell, Jr., M. R. Devoe, R. E. Sojka, S. Gilbert, R. Banks, L. H. Stolzy, C. Brooks, T. D. Matthews, and T. H. Shear (eds.) The Ecology and Management of Wetlands. Volume 1: Ecology of Wetlands Croom Helm, London, England.

    Google Scholar 

  • Pennak, R. W.. 1989. Freshwater Invertebrates of the United States: Protozoa to Mollusca. John Wiley and Sons, New York, NY, USA

    Google Scholar 

  • Perret, N. G.. 1962. The spring and summer foods of the common mallard (Anas p. platyrhynchos L.) In south central Manitoba. M.S. Thesis. University of British Columbia. Vancouver, BC, Canada.

    Google Scholar 

  • Resh, V. H. and J. K. Jackson. 1993. Rapid assessment approaches to biomonitoring using benthic macroinvertebrates. p. 195–233. In D. M. Rosenberg and V. H. Resh (eds.) Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York, NY, USA.

    Google Scholar 

  • Ringelman, J. K. and L. D. Flake. 1980. Diurnal visibility and activity of blue-winged teal and mallard broods. Journal of Wildlife Management 44:822–829.

    Article  Google Scholar 

  • Ross, L. C. and H. R. Murkin. 1989. Invertebrates. p. 35–38. In E. J. Murkin and H. R. Murkin (eds.) Marsh Ecology Research Program: Long-term Monitoring Procedures Manual. Delta Waterfowl and Wetlands Research Station, Portage la Prairie, MB, Canada.

    Google Scholar 

  • Sjöberg, K. and K. Danell. 1982. Feeding activity of ducks in relation to diel emergence of chironomids. Canadian Journal of Zoology 60:1383–1387.

    Article  Google Scholar 

  • Stewart, R. E. and H. A. Kantrud. 1971. Classification of natural ponds and lakes in the glaciated prairie region. U.S. Fish and Wildlife Service, Washington, DC, USA. Resource Publication 92.

    Google Scholar 

  • Sugden, L. G. 1973. Feeding ecology of pintail, gadwall, American widgeon, and lesser scaup ducklings. Canadian Wildlife Service Report Series 24. Ottawa, ON, Canada.

  • Swanson, G. A.. 1977. Diel food selection by Anatinae on a wastestabilization system. Journal of Wildlife Management 41:226–231.

    Article  Google Scholar 

  • Swanson, G. A. 1978. Funnel trap for collecting littoral macroinvertebrates. Progressive Fish-Culturist 40:73.

    Article  Google Scholar 

  • Swanson, G. A. and A. B. Sargeant. 1972. Observation of nighttime feeding behavior of ducks. Journal of Wildlife Management 36: 959–961.

    Article  Google Scholar 

  • Turner, A. M. and J. C. Trexler. 1997. Sampling aquatic invertebrates from marshes: evaluating the options. Journal of the North American Benthological Society 16:694–709.

    Article  Google Scholar 

  • Whitman, W.R. 1974. The response of macro-invertebrates to experimental marsh management. Ph.D. Thesis. University of Maine, Orono, ME, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanson, M.A., Roy, C.C., Euliss, N.H. et al. A surface-associated activity trap for capturing water-surface and aquatic invertebrates in wetlands. Wetlands 20, 205–212 (2000). https://doi.org/10.1672/0277-5212(2000)020[0205:ASAATF]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2000)020[0205:ASAATF]2.0.CO;2

Key Words

Navigation